Temat: Korozja wżerowa

Cel ćwiczenia:

Zapoznanie się z mechanizmem korozji wżerowej.

Wstęp

Test na korozję wżerową w roztworze chlorku żelaza (III) obejmuje procedurę dla wyznaczenia odporności na korozję wżerową stali nierdzewnych i stopów, podczas eksponowania ich w utleniającym środowisku chlorków.

Metoda ta polega na określaniu względnej odporności stali nierdzewnych, stopów na bazie niklu, stopów z dużą zawartością chromu na korozję wżerową. Może ona zostać użyta w celu określenia wpływu obecności dodatków stopowych, obróbki cieplnej i procesów powierzchniowych na odporność na korozję wżerową.

Wyniki tego testu mogą zostać wykorzystane do tego, aby uszeregować stopy w porządku zwiększenia odporności na korozję wżerową w określonych warunkach. W żaden sposób nie można stwierdzić tą metodą, jaka jest odporność stopów w środowiskach, które nie zawierają chlorków.

Wyniki testu zostały skorelowane z prawdziwym środowiskiem, takim jak np. naturalna woda morska w temperaturze otoczenia, środowiska silnie utleniające, środowiska o niskim pH, środowiska zawierające chlorki. Metoda ta została zaprojektowana, by skrócić czas, jaki potrzebny jest do zainicjowania korozji lokalnej, w porównaniu z większością naturalnych środowisk. W konsekwencji, stopień skorodowania podczas testowania będzie większy niż w naturalnych środowiskach, w podobnym okresie czasu.

W teście zostanie użyty 6% roztwór chlorku żelaza (III). Do badania zostaną przygotowane także określone próbki. W teście używać będziemy dla porównania trzech gatunków stali: węglowej, nierdzewnej (ok. 13%Cr), kwasoodpornej (ok.18%Cr, 8%Ni). Zalecany typowy rozmiar próbek do badań to 25 x 50 mm, chociaż mogą być użyte różne kształty i wielkości. Wszystkie próbkę w serii powinny mieć ten sam wymiar, aby mogły zostać porównane.

Jeżeli wzdry na granicach ziaren są częścią składową oceny, to proporcja powierzchni granic ziaren do powierzchni próbek powinna być mała z powodu podatności powierzchni granie ziarn na korozję wżerową.

UWAGA!!!

Grubość próbki może wpłynąć na szczelność szczeliny i wynik testu.

Kiedy próbki są wycinane przez cięcie nożycami, zniekształcony materiał powinien zostać usunięty przez obróbkę mechaniczną powierzchni albo szlifowanie przed testowaniem, chyba, że odporność na korozję ciętych krawędzi nie jest oceniana.

Część powierzchnie próbek powinny zostać wypolerowane jednolicie. Należy użyć papieru ściernego o gradacji 120, by uzyskać zadowalający efekt. Preferowane jest polerowanie na mokro, ale jeśli zastosuje się polerowanie na sucho, należy zrobić to powoli, by uniknąć przegrzewania próbki. Ostrze krawędzi próbek powinny zostać zaokrąglone.

UWAGA!!!

Chociaż preferowana jest wypolerowana powierzchnia, próba może zostać zmieniona przez przeprowadzającego test, by ocenić inaczej obrubione zewnętrzne krawędzie, np. przez frezowanie.
Przebieg ćwiczenia:

1. Należy wyznaczyć wymiary próbki i obliczyć sumę całkowitego obszaru wystawionego na działanie odczynnika.
2. Oczyszczyć powierzchnie próbek specjalną pastą, opluwać dobrze wodą, zanurzyć w acetonie albo alkoholu metylowym i suszyć w powietrzu.
3. Zważyć każdą próbkę z dokładnością do 0,001 g i pozostawić pod suszarką do czasu użycia.

Test na korozję wżerową w roztworze chlorku żelaza (III)

Potrzebna aparatura:
1. Szklana zlewka (1000 ml).
2. Szklane widełki (loże) – wymiary będą ograniczone do takich, które pozwolą na przejście przez wylot szklanej zlewki.
3. Szklana probówka, będzie napełniana 150 ml roztworu.
4. Termostat.

Procedura:

1. Nalać 600 ml roztworu chlorku żelaza (III) do 1000 ml szklanej zlewki. Jeśli są użyte próbki większe niż standardowe, należy dostarczyć dodatkowo roztworu o objętości co najmniej 20 ml/cm² powierzchni próbki. Przenieść szklaną zlewkę do wanny o stałej temperaturze i pozwolić roztworowi na osiągnięcie pożądanej temperatury. Odpowiednie temperatury dla testu to 22 ± 2°C i 50 ± 2°C.
2. Umieścić próbki w szklanych widełkach i zanurzyć w roztworze, gdy ten osiągnie pożądane temperatury. Utrzymać temperaturę roztworu przez cały czas trwania próby.
3. Przykryć zlewkę szkieletem zegarkowym. Najodpowiedniejszy okres badania to 72 h, chociaż mogą zostać użyte inne czasy zależnie od materiałów jakie są oceniane.
4. Wyjąć próbki, wypłukać je wodą i wyszorować nylonową szczotką pod strumieniem wody, aby usunąć produkty korozji, zanurzyć w acetonie albo alkoholu metylowym i suszyć w powietrzu. Ultradźwiękowe czyszczenie może zostać użyte jako metoda alternatywna w przypadkach, gdzie trudne jest usuwanie produktów korozji z głębokich wżerów.
5. Zważyć każdą próbkę z dokładnością do 0,001 g i pozostawić do oceny.

Badanie i ocena próbek:

1. Obiejrzać powierzchnie próbki. Strata masy próbki, jest często występująca, aby scharakteryzować odporność na korozję wżerową i szczelinową różnych materiałów. Podać szczegółowy opis, który powinien zawierać miarę maksymalnej głębokości wżeru, średniej głębokości wżeru, gęstość wżerów i głębokość szczelin.
2. Zbańać powierzchnię próbki w małym powiększeniu (na przykład 20x). Porównać wżery na krawędziach próbki i na powierzchni, wiedząc, że wżery na krawędzi mogą oddziaływać na powstawanie wżerów na powierzchni próbki. Wżery na krawędziach mogą zostać zlekcwawione, chyba, że np. szacuje się podatność na korozję po granicach ziaren.

UWAGA!!!

a) Często pożądane jest, aby sondować miejsca wżeru na powierzchni metalu igłą, by wykryć dany wżer. Rezultatem korozji lokalnej często są zamknięte wżery.

b) Test będzie nieistotny, jeśli gumowa opaska przerwie się podczas okresu badań.

3. Zmierzyć najgłębsze wżery odpowiednią techniką na przykład, profilometrem lub mikroskopem ze skalibrowaną gałką ogniskowej albo skalibrowanym okularem. Zmierzyć wystarczającą liczbę wżerów, aby określić najgłębszy wżer i średnią dziesięciu najgłębszych
wżerów. Nie zawierać w obliczonej średniej głębokości wżerów, które przecinają krawędzie próbki.

4. Zliczyć ilość wżerów na powierzchniach próbki pod niewielkim powiększeniem (na przykład, 20x) określając gęstość wżerów. Jasna plastyczna siatka, podzielona w centymetrach, może być pomocna, albo powierzchnia może zostać podzielona przez trasowanie cienkimi liniami.

5. Zmierzyć głębokość wżera pod blokami i w punktach styczności z gumowymi opaskami (otwartego nacienia) używając odpowiednią technikę: profilometr albo mikroskop ze skalibrowanym okularem.

Sprawozdanie

1. Zarejestrować procedurę pomiarową, jaka została użyta, wielkość próbki i przygotowanie powierzchni, czas próby, temperaturę i sposób, w jaki obecność wżerów albo szczelin została oszacowana.

2. Zarejestrować maksymalną głębokość wżera i średnią z dziesięciu najgłębszych wżerów w mikrometralach oraz gęstość wżerów na centymetr kwadratowy dla obu powierzchni próbki.

UWAGA!!!

 Ważne jest, by zarejestrować sposób, w jaki obecność wżerów została oszacowana, na przykład, wżery o malej średnicy, które nie zostały zidentyfikowane przez profilometr mogą zostać dostrzeżone przy małym powiększeniu mikroskopu. Dlatego drugi sposób byłby dokładniejszy.

3. Wyliczyć stratę masy próbki i zapisać w gramach na centymetr kwadratowy.

Słowa kluczowe:

Korozja szczelinowa; korozja wżerowa; roztwór chlorku żelaza (III); korozja lokalna; stałe nierdzewne; stopy na bazie niklu.

Literatura:

1. H. Uhlig: „Korozja i jej zapobieganie”, Wydawnictwa Naukowo – Techniczne, Warszawa, 1976,

2. G. Wranglen: „Podstawy korozji i ochrony metali”, Wydawnictwa Naukowo – Techniczne, Warszawa, 1975,
